Publications

Updated Jan 2025

For the most up-to-date list of publications, please visit my Google Scholar page.

Preprints

GRAM: Generalization in deep RL with a robust adaptation module

James Queeney, Xiaoyi Cai, Mouhacine Benosman, Jonathan P. How

arXiv preprint, 2024

Paper     Code     URL    

Provably efficient off-policy adversarial imitation learning with convergence guarantees

Yilei Chen, Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis

arXiv preprint, 2024

Paper     Code     URL    

Peer-Reviewed Publications

Visually robust adversarial imitation learning from videos with contrastive learning

Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis

To appear in IEEE International Conference on Robotics and Automation, 2025 (ICRA 2025)

Paper     Code     URL    

PIETRA: Physics-informed evidential learning for traversing out-of-distribution terrain

Xiaoyi Cai, James Queeney, Tong Xu, Aniket Datar, Chenhui Pan, Max Miller, Ashton Flather, Philip R. Osteen, Nicholas Roy, Xuesu Xiao, Jonathan P. How

IEEE Robotics and Automation Letters, 2025 (RA-L)

Paper     URL     Video    

Generalized policy improvement algorithms with theoretically supported sample reuse

James Queeney, Ioannis Ch. Paschalidis, Christos G. Cassandras

IEEE Transactions on Automatic Control, 2025 (TAC)

Paper     Code     URL    

A model-based approach for improving reinforcement learning efficiency leveraging expert observations

Erhan Can Ozcan, Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis

IEEE Conference on Decision and Control, 2024 (CDC 2024)

Paper     Code     URL    

Adversarial imitation learning from visual observations using latent information

Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis

Transactions on Machine Learning Research, 2024 (TMLR)

Paper     Code     URL    

Optimal transport perturbations for safe reinforcement learning with robustness guarantees

James Queeney, Erhan Can Ozcan, Ioannis Ch. Paschalidis, Christos G. Cassandras

Transactions on Machine Learning Research, 2024 (TMLR)

Paper     Code     URL    

Risk-averse model uncertainty for distributionally robust safe reinforcement learning

James Queeney, Mouhacine Benosman

Advances in Neural Information Processing Systems, 2023 (NeurIPS 2023)

Paper     Code     URL    

Opportunities and challenges from using animal videos in reinforcement learning for navigation

Vittorio Giammarino, James Queeney, Lucas C. Carstensen, Michael E. Hasselmo, Ioannis Ch. Paschalidis

22nd IFAC World Congress, 2023 (IFAC 2023)

Paper     Code     URL    

Generalized proximal policy optimization with sample reuse

James Queeney, Ioannis Ch. Paschalidis, Christos G. Cassandras

Advances in Neural Information Processing Systems, 2021 (NeurIPS 2021)

Paper     Code     URL    

Uncertainty-aware policy optimization: A robust, adaptive trust region approach

James Queeney, Ioannis Ch. Paschalidis, Christos G. Cassandras

Proceedings of the AAAI Conference on Artificial Intelligence, 2021 (AAAI 2021)

Paper     Code     URL    

Dissertation

Reliable deep reinforcement learning: Stable training and robust deployment

James Queeney

PhD thesis, Boston University, 2023

Paper     Code     URL