James Queeney

Email: jim.queeney@gmail.com · Website: jqueeney.github.io

RESEARCH SKILLS

I am interested in developing reliable, data-driven methods for decision making and control. My current research focuses on the need for robustness, safety, and generalization in deep reinforcement learning, imitation learning, and self-supervised learning, with applications in robotics.

- **Research Areas**: deep reinforcement learning, imitation learning, self-supervised learning, robust data-driven optimization and control, uncertainty quantification, robotics
- Programming Languages: Python, MATLAB, R
- Software Experience: Gurobi, Isaac Lab, MuJoCo, PyTorch, TensorFlow
- Hardware Experience: sim-to-real policy transfer on Unitree Go2 quadruped robot

EDUCATION

Boston University	Aug 2023
PhD in Systems Engineering	1 1 49
• Dissertation: "Reliable deep reinforcement learning: Stable training and robust of	deployment"
Boston University	Jan 2022
MS in Systems Engineering	
Colgate University	May 2013
BA in Mathematics and Mathematical Economics	U
• Class of 2013 Valedictorian, Honors in Mathematics, Phi Beta Kappa, Summa C	Cum Laude
RESEARCH EXPERIENCE	
Postdoctoral Research Fellow	2023 – Present
Mitsubishi Electric Research Laboratories	2020 1105010
• Topic: Data-driven methods for decision making and control in complex applicat	tions
Deservel Active	2002 D
Research Annate	2023 - Present
• Topic: Bobust coordination and control of robotic systems	
• Topic. Robust coordination and control of robotic systems	
Doctoral Research Fellow	2019-2023
Boston University – Advisors: Ioannis Paschalidis, Christos Cassandras	
• Topic: Reliable deep reinforcement learning with performance guarantees	
Research Intern	Summer 2022
Mitsubishi Electric Research Laboratories – Host: Mouhacine Benosman	
• Publication: "Risk-averse model uncertainty for distributionally robust safe reinf	forcement learning"
Research Assistant	2017 - 2018
Colgate University – Host: William Cipolli	
• Topic: Bayesian non-parametric approaches to supervised learning with Polya tr	ees

INDUSTRY EXPERIENCE

Director of Operations Research Bargain Hunt	2017 - 2018
Private Equity Associate Thomas H. Lee Partners – Consumer & Healthcare Group	2015 - 2017
Investment Banking Analyst Bank of America Merrill Lynch – Mergers & Acquisitions Group	2013 - 2015
TEACHING AND OUTREACH	
CISE Graduate Student Workshop Organizer Boston University Center for Information & Systems Engineering	Jan 2023
Graduate Teaching Fellow Boston University – Optimization Theory and Methods (SE 674)	Fall 2022
Research Mentor Boston University Research in Science & Engineering Program	Summer 2021

PUBLICATIONS

Preprints

- Queeney, J., Cai, X., Benosman, M., and How, J. P. (2024). GRAM: Generalization in deep RL with a robust adaptation module. arXiv:2412.04323.
- Chen, Y., Giammarino, V., <u>Queeney</u>, J., and Paschalidis, I. C. (2024). Provably efficient off-policy adversarial imitation learning with convergence guarantees. arXiv:2405.16668.

Peer-Reviewed Publications

- Giammarino, V., Queeney, J., and Paschalidis, I. C. (2025). Visually robust adversarial imitation learning from videos with contrastive learning. To appear in *IEEE International Conference on Robotics and Automation (ICRA 2025)*.
- Cai, X., <u>Queeney</u>, J., Xu, T., Datar, A., Pan, C., Miller, M., Flather, A., Osteen, P. R., Roy, N., Xiao, X., and How, J. P. (2025). PIETRA: Physics-informed evidential learning for traversing out-of-distribution terrain. *IEEE Robotics and Automation Letters (RA-L)*.
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2025). Generalized policy improvement algorithms with theoretically supported sample reuse. *IEEE Transactions on Automatic Control (TAC)*.
- Ozcan, E. C., Giammarino, V., <u>Queeney, J.</u>, and Paschalidis, I. C. (2024). A model-based approach for improving reinforcement learning efficiency leveraging expert observations. In 63rd IEEE Conference on Decision and Control (CDC 2024).
- Giammarino, V., <u>Queeney</u>, J., and Paschalidis, I. C. (2024). Adversarial imitation learning from visual observations using latent information. *Transactions on Machine Learning Research (TMLR)*.
- Queeney, J., Ozcan, E. C., Paschalidis, I. C., and Cassandras, C. G. (2024). Optimal transport perturbations for safe reinforcement learning with robustness guarantees. *Transactions on Machine Learning Research (TMLR)*.

- Queeney, J. and Benosman, M. (2023). Risk-averse model uncertainty for distributionally robust safe reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS 2023).
- Giammarino, V., <u>Queeney, J.</u>, Carstensen, L. C., Hasselmo, M. E., and Paschalidis, I. C. (2023). Opportunities and challenges from using animal videos in reinforcement learning for navigation. In *The* 22nd World Congress of the International Federation of Automatic Control (IFAC 2023).
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021). Generalized proximal policy optimization with sample reuse. In Advances in Neural Information Processing Systems (NeurIPS 2021).
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021). Uncertainty-aware policy optimization: A robust, adaptive trust region approach. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2021)*.

Dissertation

• Queeney, J. (2023). Reliable deep reinforcement learning: Stable training and robust deployment. PhD thesis, Boston University.

PRESENTATIONS

- Risk-averse model uncertainty for distributionally robust safe reinforcement learning (2023). 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA.
- Reliable deep reinforcement learning: Stable training and robust deployment (2023). Boston University Division of Systems Engineering PhD Final Defense, Boston, MA.
- Reliable deep reinforcement learning with robustness and safety guarantees (2023). *Mitsubishi Electric Research Laboratories Invited Talk*, Cambridge, MA.
- Safe reinforcement learning with robustness guarantees (2023). Massachusetts Institute of Technology Invited Talk, Cambridge, MA.
- Balancing stability and efficiency in deep reinforcement learning (2023). *Harvard University Invited Talk*, Cambridge, MA.
- Stable and efficient reinforcement learning with principled sample reuse (2022). CISE Graduate Student Workshop 8.0, Boston, MA. Best Presenter Award.
- Robust and efficient reinforcement learning from limited data (2021). Boston University Division of Systems Engineering PhD Prospectus Defense, Boston, MA.
- Generalized proximal policy optimization with sample reuse (2021). 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual.
- Uncertainty-aware policy optimization: A robust, adaptive trust region approach (2021). CISE Best Student Paper Awards Presentation, Virtual. Best Student Paper Award Finalist.
- Uncertainty-aware policy optimization: A robust, adaptive trust region approach (2021). 35th AAAI Conference on Artificial Intelligence (AAAI 2021), Virtual.

HONORS AND AWARDS

• Doctoral Research Fellow, Boston University	2019 - 2023
• CISE Best Student Paper Award Finalist, Boston University	2022
• CISE Graduate Student Workshop Best Presenter Award, Boston University	2022

• CISE Best Student Paper Award Finalist, Boston University	2021
• Dean's Fellowship Award, Boston University	2018 - 2019
• Class of 2013 Valedictorian, Colgate University	2013
• Osborne Mathematics Prize, Colgate University	2013
• Phi Beta Kappa Award, Colgate University	2013
• Phi Beta Kappa, Colgate University	2013
• Summa Cum Laude, Colgate University	2013
• Honors in Mathematics, Colgate University	2013
• John T. Mitchell Award, Colgate University	2012 - 2013
• Charles A. Dana Scholar, Colgate University	2011 - 2013
• Alumni Memorial Scholar, Colgate University	2009 - 2013
• Sisson Mathematics Prize, Colgate University	2010
• Dodge Prize, Colgate University	2010